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2Yaşar University, İzmir, Turkey

Abstract. Prime numbers are widely used in many fields from engineering to medicine, especially cryptology. The
security of cryptographic systems is based on difficult mathematical problems such as the factorization problem
used in RSA system. The infinity of prime numbers has been proven but the infinity of twin primes, which is
a subset of prime numbers, is still unproven. In this study, an algorithm that finds twin primes smaller than
6a + 1 for any given a ∈ Z+ is proposed. In addition, the proposed algorithm was compared with the sieve of
Eratosthenes in terms of performance and memory, and the results were discussed.
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1 Introduction

Cryptographic systems need very large prime numbers to ensure the intended security. The
usage of prime numbers in critical areas like cryptology has increased the importance of these
numbers. For this reason, many studies have been made about finding prime numbers and
distribution of prime numbers. At the present time, studies on prime numbers still continue.

For ∀i ∈ N, if pi ∈ Z+ is only divisible by 1 and itself, then pi is called a prime number. The
set of prime numbers is denoted by P. Twin prime numbers are, pi, pi+1 ∈ P where pi+1–pi = 2.
The infinity of the twin primes is a conjecture, as it still unproven. Although the infinity of
the twin prime numbers can not been proved, an important progress has been made in this
regard. D.A. Goldston, J. Pintz, C.Y. Yıldırım and Y. Zhang received the Cole Award for
their work on twin prime numbers (Goldston et al., 2006). In addition, Y. Zhang is proved
that lim infi→∞(pi+1–pi) < 70.000.000 (Zhang, 2014). After these two important improvements,
studies have been made to reduce the k value in lim infi→∞(pi+1–pi) ≤ k. J. Maynard proved
this expression for k = 600 (Maynard, 2013). Finally, it was proved for k = 246 within the scope
of the Polymath Project initiated by T. Tao to prove the twin prime conjecture (Polymath,
2014).

Also many more studies have been made to find the twin primes. A study on finding twin
primes was made in (Nuriyev & Sadıgova, 2002). When this study is examined, it is seen that
the algorithm for finding twin prime numbers is missing. In this study, the new algorithm for
finding twin prime numbers is written by using the formulas given in the previous study. Then,
the algorithm and sieve of Eratosthenes were coded in C programming language and the two
programs were compared in terms of performance and memory.
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2 Prime Numbers

Prime numbers can be defined as a number that can be only divisible by 1 and itself, which
means a positive natural number that has two divisors. 2 is the smallest prime number and
only prime number that is even. If a number is not a prime number, then the number is called
composite number. From the fundamental theorem of arithmetic, n is a composite number and
the elements of the set P is pi, where i ≥ 1 and ki ∈ Z+; n can be expressed as n = pk11 .pk22 ...pktt .
Also, from Euclid’s theorem, the set P has an infinite number of elements.

Theorem 1. There are infinitely many prime numbers.

There are different classifications of prime numbers which can be expressed in unique forms.
The most known prime number classes are Mersenne primes and Fermat numbers. While n ∈ N,
if 2n–1 is a prime, then these primes is called Mersenne primes. The largest Mersenne prime
known to date is 282589933 − 1, a number with 24.862.048 digits
(http://www.mersenne.org/primes/press/M82589933.html). In 1637, Fermat formed a unique
prime numbers similar to Mersenne primes. For ∀n, s ∈ N, numbers that can be expressed as
Fs = 22

n
+ 1 is Fermat’s number.

To check whether a number is prime or not, prime tests can be used such as Fermat’s primality
test, Miller-Rabin primality test and AKS. Apart from testing the primality of a single number,
it is also a matter of a great interest to find all prime numbers smaller than a specified value.
Finding prime numbers smaller than a small limit is not a major problem. However, with the
growth of the limit value, the prime numbers are getting bigger. Because of that more efficient
algorithms are required. One of the known methods to quickly find prime numbers for large
limit values is the sieve of Eratosthenes. Prime number sieves work by creating a list of all
integers, subtracting composite numbers with a particular algorithm from the generated list,
until only prime numbers remain. The sieve of Eratosthenes is the basis of the sieve algorithms.
After the sieve of Eratosthenes Sundram and higher-performing Atkin’s sieve algorithms emerged
(Ramaswami Aiyar, 1934; Atkin & Bernstein, 2004).

Sieve of Eratosthenes: To find all prime numbers smaller than N ∈ Z+, firstly all integers
from 2 to N are listed. The first number in the list is 2 and it’s a prime number. All the multiples
of 2 greater than 2, are deleted from the list. The next number that has not been deleted in the
list is 3 and it’s a prime. All the multiples of 3 greater than 3, are deleted from the list. The
next number that has not been deleted in the list is 5. Number 4 was ommited because it was
deleted in the first step since it is a multiple of 2. When the same operation is performed for all
numbers, only the prime numbers remain in the list (Crandall & Pomerance, 2006).

3 Twin Prime Numbers

If the difference between two consecutive prime is 2, these numbers are called twin prime num-
bers. Examples are 3-5, 5-7, 11-13. Even though a method for finding twin prime numbers is
not proposed, there are many studies on the distribution of twin prime numbers. One of these
studies is also known as Elliot-Halberstam conjecture.In addition, Euler proved in 1737 that, for
∀i ∈ N and pi is the series of prime numbers, the harmonic series

∑∞
i=0 1/pi is divergent. Also,

V. Brun proved that, for s2 = {i|pi+1–pi ≤ 2, ∀pi ∈ P}, the sum
∑

i∈s2 1/pi is finite. But in
order for this expression to be infinite series, first of all, twin primes conjecture must be correct.
As can be seen here, there is a big difference between distribution of prime numbers and the
distribution of twin prime numbers.

The largest twin prime numbers found so far are 2996863034895, 21290000± 1 numbers found
in 2016 (https://primes.utm.edu/primes/page.php?id=122213). The methods mentioned
in the section “prime numbers” are used to find prime numbers. There is no common method
used in the literature to find twin primes. For simplest way to find twin prime numbers, Sieve
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of Eratosthenes can be used by checking the difference between consecutive prime numbers.
Besides this method, twin prime numbers can be found by performing the same process in other
sieve algorithms.

Let K = {k|l1 = 6k + 1 ∈ P and l2 = 6k − 1 ∈ P}. In this case the following theorems are
correct (Nuriyev & Sadıgova, 2002).

Theorem 2. N is set of natural numbers. For ∃m,n ∈ N, k = 6mn±m± n ⇒ k /∈ K .

Theorem 3. Mj = {k|k = 6mn±m± n,m = j, j, n ∈ N}

= {k|k = (6j − 1)n± j, n ∈ N} ∪ {k|k = (6j + 1)n± j, n ∈ N}

and Ai = {k ∈ N|6i2−2i ≤ k < 6(i+1)2−2(i+1), i ∈ N}, Ai \ (Mi∩Ai) = Pi then Pi ⊂ K.

3.1 The Algorithm

Given in theorem 2, for m,n ∈ Z+ we are trying to find k = 6mn±m± n. Since the minimum
equality we can get is k = 6mn−m− n, it is quite clear that we have to try different m and n’s
while 6mn−m−n ≤ k. For k = 6mn–m–n, we can rewrite the equation as n = (k+m)/(6m−1)
which gives the maximum possible value of n for any given k andm. To reduce repetition we start
the value n from m in every iteration. So in the first step of each iteration values of m and n will
be equal, thus we can get 6m2−2m ≤ k. If we consider the equality of 6m2−2m = k, we can get
m = (−4 +

√
4 + 24k)/12, which is the upper boundary for m. As a result of these calculations

the boundaries for m and n are; 1 ≤ m ≤ (−4 +
√
4 + 24k)/12 and m ≤ n ≤ (k+m)/(6m− 1).

With this boundaries all the twin primes up to 6k + 1 can be found. The value a > 3 is any
integer number and the desired upper bound for value k.

Start
Enter the a value

for k = 3 to a do

flag = true

for m = 1 to ceil((−4 +
√
4 + 24k)/12) do

for n = 1 to (k +m)/(6m− 1) do

if (6mn+m+ n = k or 6mn+m− n = k or 6mn−m+ n = k or 6mn+m+ n = k)

flag = false

m = k + 1

break;

if (flag = true)

print “6k − 1 and 6k + 1 are twin primes” End

4 Result and Analysis

The algorithm for finding the twin numbers given in section 3 and the sieve of Eratosthenes’s
algorithm is written in C programming language. Both programs were run on a computer with
i7-7700HP CPU, 2.8 GHz and 8192 MB RAM. Figure 1. shows the performance evaluation of
the programs with twin prime numbers up to 300.000. The proposed algorithm up to 50.000 was
found to be faster than the sieve of Eratosthenes. In numbers greater than 50.000, it operates
about 1 second slower than the sieve of Eratosthenes. In addition, while the proposed algorithm
can find twin prime numbers up to 300.000, in a conventional C program, sieve of Eratosthenes
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Figure 1: Performance comparison of proposed algorithm and sieve of Eratosthenes.

algorithm can not find twin prime numbers for boundaries greater than 300.000 due to the
memory requirements.

The sieve of Eratosthenes can be thought to be more efficient after a certain point, but while
the sieve of Eratosthenes is finding twin prime numbers, it must keep all integers up to specified
limit value in the memory. The fact that the sieve of Eratosthenes could not find the twin prime
numbers after 300.000 is because of the memory problem it creates. The proposed algorithm
does not require a large amount of memory space. On a computer with high computing power,
it can perform operations faster, since there is no need for memory space.

When a change is made on the proposed algorithm by storing all numbers up to the limit
value in the memory, it is seen that the performance of both programs for the boundary of
300.000 gives approximate results. However, one of the most important features of the proposed
algorithm is that it does not require a large memory space.

5 Conclusion

At present, there is no known algorithm for finding twin prime numbers. The proposed algorithm
finds all twin prime numbers up to a specified value. The sieve of Eratosthenes is a method used
to find prime numbers, but twin prime numbers can be found by adding additional conditions
to the algorithm. When the sieve of Eratosthenes is compared with the proposed algorithm, it
is seen that there is no significant performance difference between them.

Beside performance, there is a memory space that programs need. In the proposed algorithm,
no data storage process is performed. However, in the sieve of Eratosthenes, all positive integers
up to the specified upper limit should be kept in memory. In terms of memory requirement, the
proposed algorithm is far better than the sieve of Eratosthenes. In future studies, the algorithm
proposed in this study will be optimized in terms of performance by reducing its complexity.
In addition, contributions will be made to the twin prime conjecture by using the proposed
algorithm.
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